Our Technology

Turning CO2 into Ethical Products

Kilbride Biotech Group Limited has been set up to act as development consultants for technology that significantly reduces greenhouse gas emissions (primarily carbon dioxide - CO2) emitted by the combustion of fossil fuels. The Group holds an exclusive license for the technology for the UK and Europe.

Kilbride Biotech Group is the consulting partner in building and proving the technology from the US giving us unrivalled expertise and resources. It is excellently placed to bring this technology to those emitters who need it most.

How it's done

The process uses microalgae to clean flue gas streams and produce large amounts of biomass and oxygen that can both be utilised as a raw material for many different applications. These flue gas streams can come from any plant burning fossil fuel, and also engines burning biogas generated by anaerobic digestion plants.

The process is fully proven, with excellent results. It uses innovative LED lighting and nutrient delivery to enhance microalgae growth, reduce power consumption, and increase carbon mitigation. The plant is completely self-contained, indoors and operates under optimal conditions at all times. It is independent of seasonal and daily variations in temperature and sunlight. It can operate 24 hours a day 365 days a year.

The plants are modular and scalable so they can work with any size generating capacity from small engines on landfills, through EfW plants, to AD plants and power stations.

Our unique position means we can either consult to help identify opportunity and procure the technology to develop in-house, or operate as consultants on an ongoing basis.

Process Overview

The company, in conjunction with the University of Maryland, has isolated a robust microalgae strain that is capable of withstanding a wide range of environments and can thrive in atmospheres containing up to 85% carbon dioxide. It is therefore capable of processing all of the carbon dioxide present in flue gases. The microalgae is naturally occurring and not genetically modified.

The flue gas is injected into the bottom of the bioreactors in a way that enhances mixing, promotes the rapid transfer of carbon dioxide, and optimizes the stream dispersal to ensure that as much of the CO2 is absorbed as possible.